Inversion of multi-component, multi-azimuth, walkaway VSP data for the stiffness tensor

Pawan Dewangan* and Vladimir Grechka†
*Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401-1887
†formerly Center for Wave Phenomena, presently Shell Int. E&P, Houston, TX 77001-0481

Summary

Vertical seismic profiling (VSP) is an established method for estimating in-situ anisotropy that might provide valuable information for characterization of reservoir lithology, fractures, and fluids. The P-wave slowness components, conventionally measured in multi-azimuth, walkaway VSP surveys, allow one to reconstruct some portion of the corresponding slowness surface. A major limitation of this technique is that the P-wave slowness surface alone does not constrain a number of stiffness coefficients that may be crucial for inferring certain rock properties. Those stiffnesses can be obtained only by combining the measurements of P-waves with those of S (or P/S) modes.

We show that, when polar and azimuthal coverage of the data is good, the polarizations and slownesses of P and two split shear (S_1 and S_2) waves are sufficient for estimating all 21 local elastic stiffness coefficients c_{ij} that characterize the most general triclinic anisotropy. The inverted stiffnesses themselves indicate whether or not the data can be described by a higher-symmetry model. We discuss three different scenarios for inverting noise-contaminated data and then apply our methodology to a multi-azimuth, multi-component VSP data set acquired in the Vacuum Field, New Mexico. Our inversion indicates that the medium at the receiver level can be approximated by an orthorhombic model.

Introduction

Multi-azimuth walkaway vertical seismic profiling (VSP) can be used for measuring in-situ anisotropy. Anisotropic parameters are usually estimated from P-wave slowness surfaces $p^{(P)}$ obtained by differentiating the traveltimes $t^{(P)}$ of the first arrivals with respect to the coordinates x of the surface sources as well as for the downhole geophones: $p_{i}^{(P)} = \partial t^{(P)}/\partial x_i$ ($i = 1, 2, 3$). Because of the acquisition geometry, the vertical slowness components $p_3^{(P)}$ are obtained only at the geophone levels, whereas the horizontal components $p_1^{(P)}$ and $p_2^{(P)}$ are computed only at the earth surface. To reconstruct the slowness surfaces at the geophone levels, one usually assumes lateral homogeneity of the overburden. Then, according to Snell’s law, the horizontal slownesses $p_1^{(P)}$ and $p_2^{(P)}$ at the downhole receivers coincide with those measured at the surface.

The P-wave slowness surfaces $p^{(P)}$, however, are inherently insufficient for constraining a number of stiffness coefficients needed for describing certain rock properties. Combining P- and S-wave VSP data is necessary for a more comprehensive reservoir characterization. Horne and Leaney (2000) recognized this possibility and developed a procedure for joint inversion of P- and SV-wave VSP data for parameters of transversely isotropic media with a vertical symmetry axis (VTI). The VTI model, however, might be too simplistic for characterization of realistic reservoirs. Thus, it is important to examine whether or not multi-component, multi-azimuth, walkaway VSP data can be used to obtain parameters of lower-symmetry anisotropic media.

Here we show that all 21 stiffness coefficients can be found given sufficient polar and azimuthal coverage of the data. Errors in their estimated values turn out to depend on the complexity of the overburden, which determines our ability to use the horizontal slowness components (measured at the surface) in the inversion.

Analytic background

The forward model for the inverse problem at hand is the Christoffel equation, which determines the polarization and slowness vectors of plane waves propagating in anisotropic media:

$$
F_i^{(Q)} = c_{ijkl} p_j^{(Q)} p_k^{(Q)} A_l^{(Q)} - A_i^{(Q)} = 0,
$$

$$(Q = P, S_1, S_2; i, j, k, l = 1, 2, 3).$$

We require the polarization vectors $A^{(Q)}$ to be normalized, $|A^{(Q)}| = 1$, and assume summation over all repeated indices from 1 to 3. The density-normalized stiffness tensor c, as well as the vectors p and A, are defined in a cartesian coordinate frame with the x_3-axis pointing downward. Our goal is to estimate the elastic stiffness tensor c by inverting equations (1). We consider three possible scenarios for the inversion of VSP data.

Scenario 1. When the overburden is close to homogeneous horizontally layered (Figure 1a), the model and data vectors are given by

$$
m = c, \quad d = \{p_n^{(Q)}, A_n^{(Q)}\},
$$

$$(Q = P, S_1, S_2; n = 1, \ldots, N).$$

Clearly, obtaining c from equations (1) is a linear inverse problem.

Scenario 2. It may happen that only conventional P-wave surface-source data were acquired, and the S-wave
Inversion of VSP data

Fig. 1: Three different scenarios of the inversion of multi-component VSP data corresponding to different levels of the complexity of the subsurface: (a) scenario 1, (b) scenario 2, and (c) scenario 3.

velocity distribution is unknown (Figure 1b). In this case, the horizontal slowness components \(p_{11}^{(S_1)} \), \(p_{22}^{(S_2)} \), and \(p_{22}^{(S_2)} \) of S-waves are unknown at receiver locations. Then model and data vectors are

\[
m = \left\{ c, p_{11}^{(S_1)}, p_{22}^{(S_2)} \right\},
\]

\[
d = \left\{ p_{11}^{(P)}, p_{22}^{(P)}, A_n^{(Q)} \right\},
\]

(3)

\[
(Q = P, S_1, S_2; \ n = 1, \ldots, N).
\]

Since the slowness components \(p_{11}^{(S_1)} \) and \(p_{22}^{(S_2)} \) \((i = 1, 2) \) have to be estimated along with the components of the tensor \(c \), the inversion becomes nonlinear.

Scenario 3. If the subsurface is so complicated that it is impossible to get acceptable estimates of the horizontal slownesses of either P- and S-waves at the receiver locations (Figure 1c), we operate with the model and data vectors

\[
m = \left\{ c, p_{11}^{(Q)}, p_{22}^{(Q)} \right\}, \quad d = \left\{ p_{11}^{(Q)}, A_n^{(Q)} \right\},
\]

(4)

\[
(Q = P, S_1, S_2; \ n = 1, \ldots, N).
\]

The inversion procedure is again nonlinear.

Inversion scheme and numerical results

The Christoffel equation (1) written in the form

\[
F(m, d(m)) = 0,
\]

(5)

where \(m \) and \(d \) are the model and data vectors given by equations (2)–(4), allows us to relate the data and model perturbations as

\[
\Delta d = \mathcal{F} \Delta m.
\]

(6)

Here the matrix

\[
\mathcal{F} = -\left(\frac{\partial F}{\partial d} \right)^\dagger \frac{\partial F}{\partial m}
\]

(7)

has the meaning of the Frechet derivative matrix, and \(\dagger \) denotes the pseudo-inverse.

In scenario 1, the problem of obtaining the stiffnesses \(c_{ij} \) from equations (1) is linear. Its solution is

\[
m = \mathcal{F}^T d.
\]

(8)

For scenarios 2 and 3, when the inversion becomes nonlinear, we implemented the following procedure. First, given a trial stiffness tensor \(c \), we minimize \(F^2(c, p^{(Q)}) \) [equation (1)] with respect to the horizontal slownesses \(p_{11}^{(Q)} \) and \(p_{22}^{(Q)} \) at each data point. Once estimates of the horizontal slownesses are obtained, we seek a minimum of the objective function

\[
\Phi(c) = \sum F^2(c, p^{(Q)})
\]

(9)

with respect to \(c \). The summation here is performed over all data points, and the conjugate gradient method is used in both optimization steps.

To test the inversion algorithm, we computed the polarization and slowness vectors in an orthorhombic model. Then, the data were contaminated with Gaussian noise that had standard deviations 20% for the slownesses and 10% for the polarization vectors. The stiffnesses were estimated for different realizations of the noise. We did not use information about the symmetry of the model, so the data were inverted for triclinic media.

The result presented in Figure 2 (scenario 1) clearly indicates that all elements of the stiffness tensor that are strictly zero in the original orthorhombic medium are, indeed, small. Thus, knowing the symmetry of the model \textit{a priori} is not needed for the inversion; the symmetry can be inferred from the results. The larger error bars for the computed stiffness coefficients \(c_{11}, c_{12}, \) and \(c_{22} \)
Inversion of VSP data

Fig. 3: (a, b, c): Horizontal components of the polarization vectors $A_i^{(2)}$ ($i = 1, 2$); (d, e, f): vertical slowness components $p_i^{(2)}$ ($p_1^{(2)}, p_2^{(2)}$) of P, S_1, and S_2-waves for a receiver at depth 304.8 m in well VGWU 127. The well is located at $x_1 = x_2 = 0$.
Inversion of VSP data

Field performed by students of the Reservoir Characterization Project at Colorado School of Mines. For instance, the analysis of the polarization of S-waves and the focusing of shear-wave energy led to the conclusion that the overburden (shallow 300 m) of the Vacuum Field has orthorhombic symmetry. In addition, the study of borehole breakouts resulted in an estimate of the azimuth of the maximum horizontal stress of about 32° SE.

Discussion

The feasibility of estimating the full stiffness tensor \(c \) from multi-component, multi-azimuth, walkaway VSP data depends on several factors. First, the overburden complexity limits our ability to constrain the horizontal slowness components \(p_1 \) and \(p_2 \) at the geophone levels. If estimates of \(p_1 \) and \(p_2 \) cannot be obtained (scenario 3), the problem is under-determined, rendering the inverted stiffnesses almost useless. We showed that knowledge of the horizontal slowness components of only \(P \)-waves (scenario 2) makes the inversion for all \(c_{ij} \) feasible. When the components of \(p_1 \) and \(p_2 \) of the shear-waves can be measured as well (scenario 1), the stability of the inverted stiffness coefficients increases.

Another factor that governs the accuracy of the inverted \(c_{ij} \) is the data coverage. Since different stiffness coefficients influence wave propagation for different ranges of polar and azimuthal angles, full coverage may be needed to obtain all \(c_{ij} \) with a comparable accuracy. While the inversion becomes more stable when the medium has a known symmetry, we showed that assuming a particular anisotropic model is unnecessary.

The presented case study corroborates this last point. We estimated the stiffness tensor of a triclinic model by fitting both the polarization and slowness vectors of the \(P \) and two split \(S \)-waves. We saw that the obtained stiffnesses are close to those describing an azimuthally rotated orthorhombic model. The orientation of its symmetry planes fits a number of independent observations and seems to relate to the subsurface stresses.

Acknowledgments

This work was supported by the members of the Consortium Project on Seismic Inverse Methods for Complex Structures at Center for Wave Phenomena, CSM.

References

